- Luận lý và biểu đồ học của Aristotle
- Thuyết âm tiết giả thuyết
- Định nghĩa
- Công thức
- 3 loại âm tiết giả định chính
- 1- Thuyết âm tiết giả thuyết thuần túy
- Thí dụ
- 2- Thuyết âm tiết giả thuyết hỗn hợp
- Ví dụ về chủ nghĩa âm tiết hỗn hợp khẳng định
- Ví dụ về chủ nghĩa âm tiết hỗn hợp phủ định
- 3- Thuyết âm tiết giả thuyết không hợp lý
- Thí dụ
- Ví dụ về âm tiết
- Ví dụ đầu tiên
- Ví dụ thứ hai
- Ví dụ thứ ba
- Ví dụ thứ tư
- Người giới thiệu
Một phép tam đoạn luận giả thuyết là một trong đó bắt đầu từ một số phán đoán dựa trên giả thuyết và kết thúc lên vẽ một kết luận hợp lệ bằng cách liên hệ chúng với nhau. Nó là một công cụ được sử dụng trong logic rất có mặt trong bất kỳ loại trải nghiệm nào, vì nó cho phép ngoại suy các mối quan hệ giữa các sự kiện được kết nối với nhau.
Nói chung, âm tiết được định nghĩa là một phần của suy luận suy diễn. Có một số loại và tất cả đều được hình thành bởi ba tiền đề: tiền đề đầu tiên được coi là chính, phụ thứ hai và cuối cùng là tiền đề thứ ba trong đó kết luận được tạo ra bằng cách liên hệ những tiền đề trước đó được thiết lập.
Aristotle, nhà triết học đầu tiên hình thành lý thuyết về âm tiết
Nhà tư tưởng đầu tiên hình thành lý thuyết về âm tiết là Aristotle. Nhà triết học này được coi là cha đẻ của logic học. Âm tiết vẫn là một trong những phương thức lập luận chính của con người và thường được biểu diễn bằng một loại công thức toán học để giúp hiểu rõ hơn về chúng.
Có nhiều loại âm tiết khác nhau, được phân thành bốn hình. Tất cả đều có ba thuật ngữ được đề cập và có thể tìm thấy tối đa 256 âm tiết khác nhau. Trong số đó, chỉ có 19 được coi là hợp pháp. Các âm tiết đã dẫn đến sự xuất hiện của các ngụy biện, được tạo ra bằng cách sử dụng sai các yếu tố logic được thiết lập trong chúng.
Luận lý và biểu đồ học của Aristotle
Như đã nói ở trên, chính Aristotle là người đầu tiên bắt đầu lý thuyết hóa về khái niệm thuyết âm tiết. Nhà triết học Hy Lạp sử dụng thuật ngữ này khi xử lý cái gọi là các phán đoán của Aristotle.
Để làm như vậy, ông bắt đầu nghiên cứu mối quan hệ giữa các thuật ngữ khác nhau, thống nhất chúng và rút ra kết luận: logic ra đời, từ lâu được gọi là Aristoteles để vinh danh người tạo ra nó.
Trong cuốn sách Phân tích đầu tiên của mình và trong bộ sưu tập The organon là nơi nhà tư tưởng thể hiện tất cả những đóng góp của mình về chủ đề này.
Thuyết âm tiết giả thuyết
Định nghĩa
Định nghĩa cổ điển nói rằng âm tiết giả thuyết là một lớp hoặc quy tắc suy luận để đưa ra kết luận. Trong trường hợp này, và do đó là tên giả định của nó, những gì nó nêu ra là một trường hợp có điều kiện và các điều khoản hợp lệ hoặc không hợp lệ có thể xuất hiện.
Theo logic mệnh đề, sử dụng các đầu nối logic để hợp nhất các khái niệm, giả thuyết là một loại thuyết âm tiết mà từ đó có thể rút ra một suy luận.
Trong lĩnh vực lịch sử logic học, người ta đã xác định rằng những biểu đồ này là tiền thân của lý thuyết về hệ quả.
Trong mọi trường hợp, những lập luận được trình bày bởi những biểu thức này khiến chúng trở nên rất thường xuyên trong mọi lĩnh vực của cuộc sống. Chỉ cần một người phản ánh để đưa ra quyết định là họ đang sử dụng chúng trong vô thức. Ví dụ:
Nếu tôi không nộp thuế, tôi sẽ phạm tội.
Nếu tôi phạm tội, tôi có thể bị đi tù.
Vì vậy, nếu tôi không nộp thuế, tôi có thể bị đi tù.
Công thức
Khi nói về logic, các công thức hoặc ký hiệu là những công thức được sử dụng để tạo thuận lợi cho việc sử dụng nó. Chúng rất phổ biến trong trường học, vì chúng có tác dụng ghi nhớ cấu trúc của âm tiết.
Theo nguyên tắc chung, ký hiệu giả thuyết như sau:
Tiền đề thứ nhất: P -–> Q
Tiền đề thứ hai: Q -> R
Kết luận: P -> R.
Để làm cho công thức dễ hiểu hơn, nó có thể được tóm tắt như sau:
Nếu A là, B là.
Nếu B là, C là.
Khi đó nếu A là, C là.
3 loại âm tiết giả định chính
Trong các âm tiết giả định, có một số loại khác nhau, mặc dù chúng có cùng cấu trúc và đặc điểm, nhưng có sự khác biệt nhỏ.
1- Thuyết âm tiết giả thuyết thuần túy
Đây là cấu trúc đã được giải thích trước đó, trong đó cấu trúc logic được duy trì mà không có bất kỳ thay đổi nào đối với quy tắc.
Bằng cách này, khi biết cả tiền đề thứ nhất (A và B) và tiền đề thứ hai (B và C), ta có thể suy ra một kết luận hợp lý.
Thí dụ
Nếu tôi ngủ quên vào buổi sáng, tôi sẽ đi làm muộn.
Nếu tôi đi làm muộn, họ sẽ thu hút sự chú ý của tôi.
Vì vậy, nếu tôi ngủ quên vào buổi sáng, họ sẽ thu hút sự chú ý của tôi tại nơi làm việc. "
2- Thuyết âm tiết giả thuyết hỗn hợp
Hỗn hợp trộn giả thuyết của tiền đề đầu tiên với giả thuyết của tiền đề thứ hai và thứ ba. Chúng có thể là tiêu cực hoặc tích cực, với các cấu trúc khác nhau.
Ví dụ về chủ nghĩa âm tiết hỗn hợp khẳng định
Câu khẳng định, được gọi là modus ponens, sẽ dịch thành một chủ nghĩa âm tiết như thế này:
Nếu trời nắng, thì đó là ban ngày.
Trời nắng.
Do đó, nó là ban ngày.
Ví dụ về chủ nghĩa âm tiết hỗn hợp phủ định
Mô-đun tiêu cực tollens sẽ như sau:
Nếu mặt trăng mọc, thì đó là đêm.
Nó không phải là đêm.
Do đó, chúng ta không nhìn thấy mặt trăng.
3- Thuyết âm tiết giả thuyết không hợp lý
Trộn trong tiền đề chính của nó là giả thuyết và tình huống tiến thoái lưỡng nan. Nếu điều này xảy ra, một giả thuyết âm tiết không kết hợp giả định được tạo ra. Giống như những cái hỗn hợp, chúng có dạng tích cực và dạng tiêu cực, với những cái tên giống nhau đã được chỉ ra.
Thí dụ
Nếu A là, B là hoặc C là.
Đây là cách B.
Do đó, C không phải là ».
Ví dụ về âm tiết
Đôi khi không dễ để hiểu khái niệm về thuyết âm tiết, vì vậy cách tốt nhất để giải quyết bất kỳ nghi ngờ nào là xem một số ví dụ:
Ví dụ đầu tiên
“Nếu em gái tôi ở nhà, thì cô ấy không thể tìm việc làm.
Nếu bạn không tìm kiếm một công việc, thì không ai sẽ thuê bạn.
Sau này nếu chị tôi ở nhà thì không ai thuê nữa.
Ví dụ thứ hai
Nếu đàn ông tử tế, thì ai cũng thích họ.
Nếu mọi người thích bạn, thì bạn sẽ có rất nhiều bạn.
Sau đó, nếu đàn ông tử tế, thì họ sẽ có nhiều bạn.
Ví dụ thứ ba
Nếu tôi không thức dậy, tôi không thể đến bữa tiệc.
Nếu tôi không đi dự tiệc, tôi sẽ không có niềm vui.
Vì vậy, nếu tôi không thức dậy, tôi sẽ không có niềm vui.
Ví dụ thứ tư
«Nếu bạn học logic, bạn sẽ biết cách để suy ra những lập luận hợp lệ.
Nếu bạn biết cách để suy ra các lập luận hợp lệ, thì bạn có thể học cách đưa ra các lập luận hợp lệ.
Do đó, nếu bạn học logic, thì bạn có thể học cách đưa ra các lập luận xác đáng.
Người giới thiệu
- abc. Định luật của thuyết âm tiết giả thuyết. Lấy từ abc.com.py
- Delira Bautista, José. Thuyết âm tiết giả thuyết trong tư tưởng con người. Đã khôi phục từ uaa.mx
- Beuchot, Mauritius. Giới thiệu về logic. Đã khôi phục từ books.google.es
- Chỉ số triết học. Thuyết âm tiết giả thuyết. Lấy từ Philosophy-index.com
- Tiến sĩ Naugle. Âm tiết giả thuyết. Được khôi phục từ dbu.edu
- Khái niệm Crucible. Các bài học về thuyết logic giả thuyết. Lấy từ conceptcrucible.com
- Học hỏi, Jonathan. Aristotle và Lý thuyết lôgic. Đã khôi phục từ books.google.es
- Harris, Robert. Khấu trừ. Lấy từ virtualt.com