- Căng đường cong ứng suất
- Vùng đàn hồi
- Vùng nhựa đàn hồi
- Vùng dẻo và đứt gãy
- Làm thế nào để đạt được năng suất nỗ lực?
- Ứng suất sinh ra từ đường cong ứng suất-biến dạng
- Các chi tiết quan trọng cần ghi nhớ
- Người giới thiệu
Ứng suất chảy được định nghĩa là nỗ lực cần thiết để một vật bắt đầu biến dạng vĩnh viễn, tức là trải qua biến dạng dẻo mà không bị gãy hoặc gãy.
Vì giới hạn này có thể hơi thiếu chính xác đối với một số vật liệu và độ chính xác của thiết bị được sử dụng là một yếu tố trọng lượng, nên trong kỹ thuật, người ta đã xác định rằng ứng suất chảy trong kim loại như thép kết cấu là ứng suất tạo ra 0,2% biến dạng vĩnh viễn trong đối tượng.

Hình 1. Vật liệu sử dụng trong xây dựng được thử nghiệm để xác định xem chúng có khả năng chịu được bao nhiêu ứng suất. Nguồn: Pixabay.
Biết giá trị của ứng suất chảy là điều quan trọng để biết liệu vật liệu có thích hợp cho việc sử dụng mà bạn muốn cung cấp cho các bộ phận được sản xuất cùng với nó hay không. Khi một bộ phận đã bị biến dạng vượt quá giới hạn đàn hồi, nó có thể không thể thực hiện đúng chức năng đã định và phải được thay thế.
Để có được giá trị này, các phép thử thường được thực hiện trên các mẫu được làm bằng vật liệu (ống nghiệm hoặc mẫu thử) chịu các ứng suất hoặc tải trọng khác nhau, đồng thời đo độ giãn dài hoặc độ giãn mà chúng phải chịu đối với từng mẫu. Các thử nghiệm này được gọi là thử nghiệm kéo.
Để thực hiện thử nghiệm kéo, bắt đầu bằng cách tác dụng một lực từ 0 và tăng dần giá trị cho đến khi mẫu bị đứt.
Căng đường cong ứng suất
Các cặp dữ liệu thu được bằng thử nghiệm kéo được vẽ bằng cách đặt tải trọng lên trục tung và biến dạng trên trục hoành. Kết quả là một đồ thị như hình bên dưới (hình 2), được gọi là đường cong ứng suất-biến dạng của vật liệu.
Từ nó nhiều tính chất cơ học quan trọng được xác định. Mỗi vật liệu có đường cong ứng suất-biến dạng riêng. Ví dụ, một trong những loại được nghiên cứu nhiều nhất là thép kết cấu, còn được gọi là thép cacbon nhẹ hoặc thấp. Nó là một vật liệu được sử dụng rộng rãi trong xây dựng.
Đường cong ứng suất-biến dạng có các vùng đặc biệt trong đó vật liệu có ứng xử nhất định theo tải trọng tác dụng. Hình dạng chính xác của chúng có thể khác nhau đáng kể, nhưng chúng vẫn có một số đặc điểm chung, được mô tả dưới đây.
Đối với những gì sau đây, xem hình 2, tương ứng với các thuật ngữ rất chung cho kết cấu thép.

Hình 2. Đường cong ứng suất-biến dạng cho thép. Nguồn: sửa đổi từ Hans Topo1993
Vùng đàn hồi
Vùng từ O đến A là vùng đàn hồi, trong đó Định luật Hooke có giá trị, trong đó ứng suất và biến dạng tỷ lệ với nhau. Trong vùng này, vật liệu được phục hồi hoàn toàn sau khi tác dụng của ứng suất. Điểm A được gọi là giới hạn của tỷ lệ thuận.
Trong một số vật liệu, đường cong đi từ O đến A không phải là đường thẳng, nhưng chúng vẫn đàn hồi. Điều quan trọng là chúng trở lại hình dạng ban đầu khi hết sạc.
Vùng nhựa đàn hồi
Tiếp theo, chúng ta có vùng từ A đến B, trong đó độ biến dạng tăng nhanh hơn theo nỗ lực, khiến cả hai chúng không tỷ lệ thuận. Độ dốc của đường cong giảm và tại B nó trở thành phương ngang.
Từ điểm B, vật liệu không còn phục hồi hình dạng ban đầu và giá trị của ứng suất tại điểm đó được coi là giá trị của ứng suất chảy.
Vùng từ B đến C được gọi là vùng năng suất hoặc vùng leo của vật liệu. Ở đó sự biến dạng vẫn tiếp tục mặc dù tải trọng không tăng. Nó thậm chí có thể giảm, đó là lý do tại sao người ta nói rằng vật liệu trong điều kiện này là nhựa hoàn hảo.
Vùng dẻo và đứt gãy
Trong vùng từ C đến D, xảy ra hiện tượng cứng biến dạng, trong đó vật liệu có những thay đổi trong cấu trúc của nó ở cấp độ phân tử và nguyên tử, đòi hỏi những nỗ lực lớn hơn để đạt được biến dạng.
Vì lý do này, đường cong trải qua sự tăng trưởng kết thúc khi đạt đến ứng suất lớn nhất σ max.
Từ D đến E vẫn có khả năng biến dạng nhưng tải trọng ít hơn. Một loại mỏng được hình thành trong mẫu (mẫu vật) được gọi là độ cứng, cuối cùng dẫn đến sự đứt gãy được quan sát thấy tại điểm E. Tuy nhiên, đã ở điểm D, vật liệu có thể được coi là bị hỏng.
Làm thế nào để đạt được năng suất nỗ lực?
Giới hạn đàn hồi L e của vật liệu là ứng suất lớn nhất mà vật liệu đó có thể chịu được mà không làm mất tính đàn hồi. Nó được tính bằng thương số giữa độ lớn của lực cực đại F m và diện tích mặt cắt ngang của mẫu A.
L e = F m / A
Các đơn vị của giới hạn đàn hồi trong Hệ thống quốc tế là N / m 2 hoặc Pa (Pascals) vì nó là một ứng suất. Giới hạn đàn hồi và giới hạn tỉ đối tại điểm A có giá trị rất gần nhau.
Nhưng như đã nói ở phần đầu, có thể không dễ dàng để xác định chúng. Ứng suất chảy thu được thông qua đường cong ứng suất-biến dạng là giá trị gần đúng thực tế với giới hạn đàn hồi được sử dụng trong kỹ thuật.
Ứng suất sinh ra từ đường cong ứng suất-biến dạng
Để có được nó, một đường thẳng được vẽ song song với đường tương ứng với vùng đàn hồi (vùng tuân theo định luật Hooke) nhưng dịch chuyển khoảng 0,2% trên thang ngang hoặc 0,002 inch trên mỗi inch biến dạng.
Đường này kéo dài cho đến khi nó giao với đường cong tại một điểm có tọa độ thẳng đứng là giá trị ứng suất chảy mong muốn, được ký hiệu là σ y , như trong hình 3. Đường cong này thuộc về một vật liệu dẻo khác: nhôm.

Hình 3. Đường cong ứng suất-biến dạng đối với nhôm, từ đó ứng suất chảy được xác định trong thực tế. Nguồn: tự làm.
Hai vật liệu dẻo như thép và nhôm có các đường cong ứng suất-biến dạng khác nhau. Ví dụ, nhôm không có phần thép nằm ngang gần như đã thấy ở phần trước.
Các vật liệu khác được coi là dễ vỡ như thủy tinh, không trải qua các giai đoạn mô tả ở trên. Vỡ xảy ra rất lâu trước khi xảy ra các biến dạng đáng kể.
Các chi tiết quan trọng cần ghi nhớ
- Các lực được xem xét về nguyên tắc không tính đến sự biến đổi chắc chắn xảy ra trong diện tích mặt cắt ngang của mẫu thử. Điều này gây ra một lỗi nhỏ được sửa chữa bằng cách vẽ đồ thị các ứng suất thực, những ứng suất có tính đến việc giảm diện tích khi độ biến dạng của mẫu tăng lên.
- Các nhiệt độ được coi là bình thường. Một số vật liệu dễ uốn ở nhiệt độ thấp và không còn dẻo nữa, trong khi những vật liệu giòn khác lại dẻo ở nhiệt độ cao hơn.
Người giới thiệu
- Bia, F. 2010. Cơ học vật liệu. Đồi McGraw. ngày 5. Phiên bản. 47-57.
- Kỹ sư Edge. Sức mạnh sản lượng. Được khôi phục từ: architectsedge.com.
- Căng thẳng. Được khôi phục từ: instron.com.ar
- Valera Negrete, J. 2005. Ghi chú về Vật lý đại cương. UNAM. 101-103.
- Wikipedia. Leo. Phục hồi từ: Wikipedia.com
